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Abstract

It is proved that if X is infinite dimensional, then there exists an infinite dimensional space

of X-valued measures which have infinite variation on sets of positive Lebesgue measure. In

term of spaceability, it is also shown that ca(B, λ,X)\Mσ, measures with not σ-finite variation,

contains a closed subspace. Other considerations are made for the space of vector measures

whose range are neither closed nor convex. All of those results extend in some sense theorems

in [7].
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1 Brief introduction and results

We begin by recalling the following relatively new concepts related to the “algebraical size” of

subsets of Banach spaces.

Definition 1.1 (Gurariy, 1991) A subset M of a Banach space is said to be

1. n-lineable if M ∪ {0} contains an n-dimensional vector subspace;

2. lineable if M ∪ {0} contains an infinite dimensional vector subspace;

3. dense-lineable if M ∪ {0} contains an infinite dimensional dense vector subspace;
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4. spaceable if M ∪ {0} contains an infinite dimensional closed vector subspace.

Let I = [0, 1] be the unit interval and let B denote the σ-algebra of all Borel subsets of I. Also,

let λ be the Lebesgue measure on I. For a Banach space X we let ca(B, λ,X) stand for the space

of all vector measures µ : B −→ X which are countable additive and absolutely continuous with

respect to λ. Then ca(B, λ,X) is a Banach space endowed with the norm

‖µ‖ca = sup
A∈B
‖µ(A)‖X .

Let us also recall that the variation of a vector measure is defined by

|µ|(A) = sup{
n∑
i=1

‖µ(Ai)‖ : Ai pairwise disjoint

n⋃
i=1

Ai = A}.

In the sequel, we shall use the following notation for the space

cabv(B, λ,X) = {µ ∈ ca(B, λ,X) : |µ| is finite}.

Then cabv(B, λ,X) endowed with the variation norm | · | (i.e., the norm is |µ|(I)) is a Banach space.

In [7] it is proved the following.

Theorem 1.2 Let (B, λ) be the Lebesgue measure space on the unit interval, let 1 ≤ p <∞. Then

the set of `p-valued measures with relatively compact range such that their variation measures take

the value infinity on every non-null set is lineable in ca(B, λ, `p).

We would like to note that the above result holds for any infinite dimensional Banach space.

Following [3], let us denote by Mσ the subspace of ca(B, λ,X) of all measures µ such that |µ| is
σ-finite. Let ρ be the metrizable vector topology on Mσ defined by the base {Vn n ∈ N}, where

Vn =

{
µ ∈ ca(B, λ,X) :

‖µ‖ ≤ 1
2n and there exists E ∈ B with

λ(E) ≤ 1
2n and |µ|(I \ E) ≤ 1

2n

}

It is easy to see that (Mσ, ρ) is complete.

At this stage, we are ready to show the following.

Theorem 1.3 Let X be any infinite dimensional Banach space and let (B, λ) be the Lebesgue

measure space on the unit interval. Then the set of X-valued measures with relatively compact

range such that their variation measures take the value infinity on every non-null set is lineable in

ca(B, λ,X).

Proof. Let (An)n be a sequence of Borel sets in I such that

• I =
⋃
nAn;

• An ∩Am = ∅ for n 6= m;

• λ(An) > 0 for every n ∈ N.
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For each n ∈ N, let Pn be the subspace of ca(B, λ,X) of all simple measures µ of kind

µ(A) =
∑
finite

λ(A ∩An)xk, A ∈ B.

By a Dvoretzy-Rogers trick, it is not hard to show that

Pn
ca(B,λ,X) *Mσ (see [3]).

Therefore, if we pick µn ∈ Pn
ca(B,λ,X) \Mσ, we have that

• all the µn’s have relatively compact range and their variation measures take the value infinity

on every non-null set (see [3, Theorem 2]),

• all linear combinations of the µn’s have relatively compact range and their variation measures

take the value infinity on every non-null set, and

• the µn’s are linearly independent (because they have disjoint supports).

Now, we would like to deal with the following question.

Question 1.4 Is ca(B, λ,X) \Mσ spaceable?

It is proved in [6] (see also [1]) the following remarkable result.

Theorem 1.5 Let Zn (n ∈ N) be Banach spaces and X a Fréchet space. Let Tn : Zn −→ X be

continuous linear operators and Y the linear span of
⋃
n Tn(Zn). If Y is not closed in X, then the

complement X \ Y is spaceable.

Before going on, let us recall some standard concepts. For a sequence of Banach spaces (Xn, ‖ · ‖n)

such that all Xn’s are (isomorphic to) a closed subspace of a bigger Banach space X , consider(⊕
n∈N

Xn

)
c

= {xn ∈ Xn : lim
n→∞

xn exists in X},

endowed with the norm

‖(xn)n‖ = sup
n
‖xn‖n.

Then
(⊕

n∈NXn

)
c

is a Banach space.

We are ready to state the main Theorem of this note.

Theorem 1.6 If X is infinite dimensional, then ca(B, λ,X) \Mσ is spaceable.

Proof. Let us fix a sequence (An)n ⊆ B such that

1. An ⊆ An+1, for each n ∈ N,

2. λ(An+1 \An) > 0, for each n ∈ N,
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3.
⋃
n∈NAn = I.

Let Σn = {E ∩ An : E ∈ B} be the σ-algebra generated by An. Since, for each n ∈ N, we can

see (cabv(Σn, λ,X), ‖ · ‖ca) as a closed subspace of (cabv(B, λ,X), ‖ · ‖ca) (via the natural map that

associates to each µ ∈ (cabv(Σn, λ,X), ‖·‖ca) the measure that is equal to µ on Σn and zero outside

An), then we can consider the Banach space(⊕
n∈N

(cabv(Σn, λ,X, ‖ · ‖ca)

)
c

.

Let us define

M =

{
(µn)n ∈

(⊕
n∈N

(cabv(Σn, λ,X), ‖ · ‖ca)

)
c

: µn+1|Σn = µn

}
.

Let us show that M is a closed subspace of (
⊕

n∈N(cabv(Σn, λ,X), ‖ · ‖ca))c.
Let (µp)p ⊆M (where µp = (µpn)n for each p ∈ N) be a sequence such that

lim
p→∞

= µ = (µn)n ∈

(⊕
n∈N

(cabv(Σn, λ,X), ‖ · ‖ca)

)
c

;

explicitly,

sup
n

sup
A
‖µpn(A)− µn(A)‖ p→∞−→ 0.

Let A ∈ Σn. Since µpn+1(A) = µpn(A) we have

‖µn+1(A)− µn(A)‖ ≤ ‖µpn+1(A)− µn+1(A)‖+ ‖µpn(A)− µn(A)‖ p→∞−→ 0.

Namely, µ ∈M. Therefore, M is a Banach space.

Let us define

T :M−→ (ca(B, λ,X), ‖ · ‖ca)

defined by

T ((µn)n)(A) = lim
n→∞

µn(A ∩An) ∀A ∈ B.

Let us prove that T is a continuous linear operator such that T (M) = Mσ.

First, let us note that T is well defined. Indeed, let (Ek)k ⊆ B be a disjoint sequence of sets.

Then

T ((µn)n)(
⋃
k

Ek) = lim
n→∞

µn((
⋃
k

Ek) ∩An)

= lim
n→∞

µn(
⋃
k

(Ek ∩An))

= lim
n→∞

∑
k

µn(Ek ∩An)

=
∑
k

lim
n→∞

µn(Ek ∩An)

=
∑
k

T ((µn)n)(Ek),
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since we have convergence with respect to the semivariation norm ‖ · ‖ca. Moreover, it is evident

that T ((µn)n) is λ-continuous.

The linearity follows directly from the definition.

For the continuity,

‖T ((µn)n)‖ca = sup
A∈B
‖T ((µn)n)(A)‖

= sup
A∈B
‖ lim
n→∞

µn(A ∩An)‖

≤ sup
A∈B

lim
n→∞

‖µn(A ∩An)‖

= sup
n∈N

sup
A∈B
‖µn(A ∩An)‖

= ‖(µn)n‖M.

From the equality T (M) = Mσ, let us first note that T ((µn)n) is a measure of σ-finite variation.

Indeed, by construction, for each s ∈ N

|T ((µn)n)|(As) ≤ lim
n→∞

|µn|(As)

(by the definition on M) = |µs|(As)

< +∞.

Moreover, if µ ∈Mσ, since |µ| is σ-finite, consider an increasing sequence (Cn)n such that⋃
n

Cn = I and |µ|(Cn) < +∞, for all n ∈ N;

now, take µn ∈ cabv(Σn, λ, x) defined by µn(A ∩ An) = µ(A ∩ An ∩ Cn). Then, by construction,

(µn)n ∈M and we have

T ((µn)n) = µ.

It was already observed in [3] that Mσ, respect to the complete metric ρ, is not closed in

(ca(B, λ,X), ‖ · ‖ca). Since the topology generated by ρ is stronger than the norm topology ‖ · ‖ca,
we have that (Mσ, ‖ · ‖ca) is not closed in (ca(B, λ,X), ‖ · ‖ca) either. The proof is concluded by

simply applying Theorem 1.5 above.

Let us recall the following definition (see [2]).

Definition 1.7 Let (Ω,Σ) be a measurable space, λ a positive measure on Σ, and X an infinite

dimensional Banach space. A measure µ ∈ ca(λ,X) is said to be injective when for each φ, ψ ∈
L∞(λ) the following condition holds:

if

∫
φdµ =

∫
ψdµ then φ = ψ λ− a.e.

In [7], using a nice construction, the authors were able to show the following
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Theorem 1.8 Let λ be the Lebesgue measure on the Borel sets in [0, 1] and X an infinite dimen-

sional Banach space. Then the set of injective measures is lineable in ca(λ,X).

At this point we are interested in the spaceability of the set of injective measures. In [8], A.

Wilansky proved the following general criterion to have spaceability

Theorem 1.9 Let E be a Banach space. If F is a closed infinite codimensional vector subspace of

a Banach space E, then E \ F is spaceable.

We would like to use this criterion to note the following.

Theorem 1.10 Let λ the Lebesgue measure on the Borel sets in [0, 1], and X be an infinite di-

mensional Banach space. Then the set of injective measures is spaceable in ca(λ,X).

Before providing the proof, we need the following lemma.

Lemma 1.11 The space

NI = {µ ∈ ca(λ,X) : µ is not injective}

is a closed subspace of ca(λ,X).

Proof. We will provide two different proofs:

1th way To show that it is closed it is enough to note the following: a measure µ ∈ ca(λ,X) is injective

if and only if the integral operator associate to µ

Tµ : L∞(λ) −→ X

Tµ(f) =

∫
fdµ,

is injective.

Suppose that (µn)n ⊆ NI converges to µ ∈ ca(λ,X), and µ is injective. Therefore,

L∞(λ)∗ = T ∗µ(X∗)
weak∗

Since (µn)n converges to µ, we have that

T ∗µ(X∗)
weak∗ ⊆

⋃
n∈N

T ∗µn(X∗)
weak∗

.

Thus, there must exists n ∈ N such that

weak∗ − int
(
T ∗µn(X∗)

)
6= ∅.

Since T ∗µn(X∗) is a vector subspace, that would implies

T ∗µn(X∗)
weak∗

= L∗∞(λ).

Against the fact that µn ∈ NI.
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2th way It is well known that µ ∈ NI if and only if for each B ∈ B, {µ(A∩B) : A ∈ B} is convex and

weakly compact (see [5]). However, the limit of a sequence of non-empty convex closed sets

in the Hausdorff metric it is still a non-empty convex closed (see [4, 4.3.11]). Moreover, since

µn
n→∞−→ µ implies {µn(A ∩ B) : A ∈ B} n→∞−→ {µ(A ∩ B) : A ∈ B} in the Hausdorff metric,

we obtain that if each {µn(A ∩B) : A ∈ B} is convex, weakly compact, and

µn
n→∞−→ µ,

then {µ(A ∩B) : A ∈ B} is convex and weakly compact too.

From what we said above, it follows that NI is a closed subspace of ca(λ,X).

Proof of Theorem 1.10. From Lemma 1.11, we have that NI is a closed subspace of ca(λ,X) of

infinite codimension. To show that the quotient ca(λ,X)/NI is infinite dimensional, it is sufficient

to use a similar construction as in the proof of [7, Theorem 2.4]. Then Theorem 1.9 applies.

Since it is well known that every injective measure has range neither closed nor convex, we

finally obtain the following corollary.

Corollary 1.12 Let λ be the Lebesgue measure on the Borel sets in [0, 1], and X an infinite

dimensional Banach space. Then the set of measures whose range is neither closed nor convex

is spaceable in ca(λ,X).
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